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Recap

Last time...

▶ Mixture Models (Gaussian and general exp-fam)

▶ K-Means as MAP estimation

▶ EM as maximizing the marginal log likelihood

▶ Connecting EM and VI
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Outline

Today...

▶ Hidden Markov Models

▶ The forward-backward algorithm

▶ EM for HMMs

▶ Implementation Details
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Recap: Gaussian Mixture Models

Recall the basic Gaussian mixture model,

zt
iid∼ Cat(π) (1)

xt | zt ∼N (µzt ,Σzt) (2)

where

▶ zt ∈ {1, . . . ,K} is a latent mixture assignment

▶ xt ∈ RD is an observed data point

▶ π ∈∆K , µk ∈ RD, and Σk ∈ RD×D⪰0 are parameters

(Here we’ve switched to indexing data points by t rather than n.)

Let Θ denote the set of parameters. We can be Bayesian and put a prior on Θ and run Gibbs or VI, or
we can point estimate Θ with EM, etc.
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Recap: Gaussian Mixture Models II
Draw the graphical model.

5 / 24



Recap: Gaussian Mixture Models III
Recall the EM algorithm for mixture models,

▶ E step: Compute the posterior distribution

q(z1:T) = p(z1:T | x1:T ;Θ) (3)

=
T
∏

t=1

p(zt | xt;Θ) (4)

=
T
∏

t=1

qt(zt) (5)

▶ M step: Maximize the ELBO wrt Θ,

L (Θ) = Eq(z1:T) [log p(x1:T , z1:T ;Θ)− log q(z1:T)] (6)

= Eq(z1:T) [log p(x1:T , z1:T ;Θ)] + c. (7)

For exponential family mixture models, the M-step only requires expected sufficient statistics.
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Hidden Markov Models
Hidden Markov Models (HMMs) are like mixture models with temporal dependencies between the
mixture assignments.

This graphical model says that the joint distribution factors as,

p(z1:T ,x1:T) = p(z1)
T
∏

t=2

p(zt | zt−1)
T
∏

t=1

p(xt | zt). (8)

We call this an HMM because the hidden states follow a Markov chain, p(z1)
∏T

t=2 p(zt | zt−1).
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Hidden Markov Models II

An HMM consists of three components:

1. Initial distribution: z1 ∼ Cat(π0)

2. Transition matrix: zt ∼ Cat(Pzt−1) where P ∈ [0,1]
K×K is a row-stochastic transition matrix with

rows Pk .

3. Emission distribution: xt ∼ p(· | θ zt)
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Example: The occasionally dishonest casino

Figure: An occasionally dishonest casino that sometimes throws loaded dice.
From https://probml.github.io/dynamax/notebooks/hmm/casino_hmm_inference.html
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Example: HMM for splice site recognition

Figure: A toy model for parsing a genome to find 5’ splice sites. From ?.

Question: Suppose the splice site always had a GT sequence. How would you change the model to
detect such sites?
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Example: Autoregressive HMM for video segmentation

Figure: Segmenting videos of freely moving mice [?]. (Show video.)
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Hidden Markov Models III

We are interested in questions like:

▶ What are the predictive distributions of p(zt+1 | x1:t)?

▶ What is the posterior marginal distribution p(zt | x1:T)?

▶ What is the posterior pairwise marginal distribution p(zt, zt+1 | x1:T)?

▶ What is the posterior mode z⋆1:T = argmaxp(z1:T | x1:T)?

▶ How can we sample the posterior p(z1:T | x1:T) of an HMM?

▶ What is the marginal likelihood p(x1:T)?

▶ How can we learn the parameters of an HMM?

Question: Why might these sound like hard problems?
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Computing the predictive distributions
The predictive distributions give the probability of the latent state zt+1 given observations up to but
not including time t+ 1. Let,

αt+1(zt+1)≜ p(zt+1,x1:t) (9)

=
K
∑

z1=1

· · ·
K
∑

zt=1

p(z1)
t
∏

s=1

p(xs | zs)p(zs+1 | zs) (10)

=
K
∑

zt=1





 

K
∑

z1=1

· · ·
K
∑

zt−1=1

p(z1)
t−1
∏

s=1

p(xs | zs)p(zs+1 | zs)

!

p(xt | zt)p(zt+1 | zt)



 (11)

=
K
∑

zt=1

αt(zt)p(xt | zt)p(zt+1 | zt). (12)

We call αt(zt) the forward messages. We can compute them recursively! The base case is
p(z1 | ∅)≜ p(z1).
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Computing the predictive distributions II

We can also write these recursions in a vectorized form. Let

αt =





αt(zt = 1)
...

αt(zt = K)



=





p(zt = 1,x1:t−1)
...

p(zt = K,x1:t−1)



 and lt =





p(xt | zt = 1)
...

p(xt | zt = K)



 (13)

both be vectors in RK+. Then,

αt+1 = P⊤(αt ⊙ lt) (14)

where ⊙ denotes the Hadamard (elementwise) product and P is the transition matrix.
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Computing the predictive distributions III
Finally, to get the predictive distributions we just have to normalize,

p(zt+1 | x1:t)∝ p(zt+1,x1:t) = αt+1(zt+1). (15)

Question: What does the normalizing constant tell us?
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Computing the posterior marginal distributions

The posterior marginal distributions give the probability of the latent state zt given all the observations
up to time T .

p(zt | x1:T) =
K
∑

z1=1

· · ·
K
∑

zt−1=1

K
∑

zt+1=1

· · ·
K
∑

zT=1

p(z1:T ,x1:T) (16)

=

� K
∑

zt=1

· · ·
K
∑

zt−1=1

p(z1)
t−1
∏

s=1

p(xs | zs)p(zs+1 | zs)
�

× p(xt | zt)

×
� K
∑

zt+1=1

· · ·
K
∑

zT=1

T
∏

u=t+1

p(zu | zu−1)p(xu | zu)
�

(17)

= αt(zt)× p(xt | zt)× βt(zt) (18)

where we have introduced the backward messages βt(zt).
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Computing the backward messages

The backward messages can be computed recursively too,

βt(zt)≜
K
∑

zt+1=1

· · ·
K
∑

zT=1

T
∏

u=t+1

p(zu | zu−1)p(xu | zu) (19)

=
K
∑

zt+1=1

p(zt+1 | zt)p(xt1 | zt+1)

 

K
∑

zt+2=1

· · ·
K
∑

zT=1

T
∏

u=t+2

p(zu | zu−1)p(xu | zu)

!

(20)

=
K
∑

zt+1=1

p(zt+1 | zt)p(xt1 | zt+1)βt+1(zt+1). (21)

For the base case, let βT(zT) = 1.
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Computing the backward messages (vectorized)
Let

β t =





βt(zt = 1)
...

βt(zt = K)



 (22)

be a vector in RK+. Then,

β t = P(β t+1 ⊙ lt+1). (23)

Let βT = 1K .

Now we have everything we need to compute the posterior marginal,

p(zt = k | x1:T) =
αt,k lt,k βt,k

∑K
j=1αt,jlt,jβt,j

. (24)

We just derived the forward-backward algorithm for HMMs [?].
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What do the backward messages represent?
Question: If the forward messages represent the predictive probabilities αt+1(zt+1) = p(zt+1,x1:t),
what do the backward messages represent?
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Computing the posterior pairwise marginals
Exercise: Use the forward and backward messages to compute the posterior pairwise marginals
p(zt, zt+1 | x1:T).
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Normalizing the messages for numerical stability
If you’re working with long time series, especially if you’re working with 32-bit floating point, you need
to be careful.

The messages involve products of probabilities, which can quickly overflow.

There’s a simple fix though: after each step, re-normalize the messages so that they sum to one. I.e
replace

αt+1 = P⊤(αt ⊙ lt) (25)

with

eαt+1 =
1
At
P⊤(eαt ⊙ lt) (26)

At =
K
∑

k=1

K
∑

j=1

Pjkeαt,jlt,j ≡
K
∑

j=1

eαt,jlt,j (since P is row-stochastic). (27)

This leads to a nice interpretation: The normalized messages are predictive likelihoods
eαt+1,k = p(zt+1 = k | x1:t), and the normalizing constants are At = p(xt | x1:t−1).
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EM for Hidden Markov Models
Now we can put it all together. To perform EM in an HMM,

▶ E step: Compute the posterior distribution

q(z1:T) = p(z1:T | x1:T ;Θ). (28)

(Really, run the forward-backward algorithm to get posterior marginals and pairwise marginals.)

▶ M step: Maximize the ELBO wrt Θ,

L (Θ) = Eq(z1:T) [log p(x1:T , z1:T ;Θ)] + c (29)

= Eq(z1:T)

�

K
∑

k=1

I[z1 = k] logπ0,k

�

+Eq(z1:T)





T−1
∑

t=1

K
∑

i=1

K
∑

j=1

I[zt = i, zt+1 = j] log Pi,j





+Eq(z1:T)

�

T
∑

t=1

K
∑

k=1

I[zt = k] log p(xt;θk)

�

(30)

For exponential family observations, the M-step only requires expected sufficient statistics.
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What else?

▶ How can we sample the posterior?

▶ How can we find the posterior mode?

▶ How can we choose the number of states?

▶ What if my transition matrix is sparse?
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