
STATS305B: Applied Statistics II
Poisson processes

Scott Linderman

March 10, 2025

1 / 41



Course Outline

▶ Weeks 1-3: Classics: Exponential family distributions and GLMs

▶ Weeks 4-5: Bayesian Inference algorithms: MCMC and variational inference

▶ Weeks 6-7: Latent variable models: mixture models, HMMs, etc.

▶ Weeks 8-9: Deep generative models: VAEs, Transformers, Deep SSMs, Denoising diffusion models

▶ Week 10: Stochastic Process Models

2 / 41



Learning Objectives

▶ Understand the mathematical underpinnings of classical and modern models for discrete data.

▶ Develop expertise in an array of algorithms for parameter estimation and inference in these
models.

▶ Be able to code these models and algorithms from scratch in Python.
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Assignments

▶ Weeks 1-3: Classics: Exponential family distributions and GLMs
Predict outcomes of college football games with a Bradley-Terry model.

▶ Weeks 4-5: Bayesian Inference algorithms: MCMC and variational inference
Election forecasting with a Bayesian GLM.

▶ Weeks 6-7: Latent variable models: mixture models, HMMs, etc.
Changepoint detection in time series data.

▶ Weeks 8-9: Deep generative models: VAEs, Transformers, Deep SSMs, Denoising diffusion models
Build a small LLM.

▶ Week 10: Stochastic Process Models
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Outline

▶ Defining properties of a Poisson process

▶ Four ways to sample a Poisson process

▶ Beyond Poisson: Hawkes processes
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Defining properties of a Poisson process
▶ Poisson processes are stochastic processes that
generate random sets of points {xn}Nn=1 ⊂X .

▶ Poisson processes are governed by an intensity
function, λ(x) :X → R+.

▶ Property #1: The number of points in any interval
is a Poisson random variable,

N(A )∼ Po

�∫

A
λ(x)dx

�

(1)

▶ Property #2: Disjoint intervals are independent,

N(A )⊥⊥ N(B) ⇐⇒ A ∩B =∅ (2)
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Example applications of Poisson processes

▶ Modeling neural firing rates

▶ Locations of trees in a forest

▶ Locations of stars in astronomical surveys

▶ Arrival times of customers in a queue (or HTTP requests to a server)

▶ Locations of bombs in London during World War II

▶ Times of photon detections on a light sensor

▶ Others?
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Four ways to sample a Poisson process

1. The top-down approach

2. The interval approach

3. The time-rescaling approach

4. The thinning approach
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Top-down sampling of a Poisson process

Given λ(x) (and a domainX ):

1. Sample the total number of points

N ∼ Po

�∫

X
λ(x)dx

�

(3)

2. Sample the locations of the points

xn
iid∼

λ(x)
∫

X λ(x
′)dx′

(4)

for n= 1, . . . ,N.

Question: what assumptions are necessary for this procedure to be tractable?

9 / 41



Deriving the Poisson process likelihood
Exercise: from the top-down sampling process, derive the Poisson process likelihood,

p
�

{xn}Nn=1 | λ(x)
�

= (5)
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Intervals of a homogeneous Poisson process

▶ A Poisson process is homogeneous if its intensity is constant, λ(x)≡ λ.

▶ Property #3: A homogeneous Poisson process on [0,T] ⊂ R (e.g. where points correspond to
arrival times) has independent, exponentially distributed intervals,

∆n = xn − xn−1
iid∼ Exp(λ) (6)

▶ Property #4: A homogeneous Poisson process is memoryless — the amount of time until the next
point arrives is independent of the time elapsed since the previous point arrived.
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Sampling a homogeneous Poisson process by simulating intervals

We can sample a homogeneous Poisson process on [0,T] by simulating intervals as follows:

1. Initialize X =∅ and x0 = 0

2. For n= 1,2, . . .:

▶ Sample ∆n ∼ Exp(λ).

▶ Set xn = xn−1+∆n.

▶ If xn > T , break and return X ,

▶ Else, set X ← X ∪ {xn}.
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Deriving the likelihood of a homogeneous Poisson process
Exercise: from the interval sampling process, derive the likelihood of a homogeneous Poisson process.
Show that it is the same as what you derived from the top-down sampling process.
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Sampling an inhomogeneous Poisson process by time-rescaling
▶ Now consider an inhomogeneous Poisson process on [0,T]; i.e. one with a non-constant intensity.

▶ Apply the change of variables,

x 7→
∫ x

0

λ(t)dt ≜ Λ(x) (7)

Note that this is an invertible transformation when λ(x)> 0.

▶ Sample a homogeneous Poisson process with unit rate on [0,Λ(T)] to get points U = {un}Nn=1.
Then set,

X = {Λ−1(un) : un ∈ U}. (8)

▶ Sanity check: what is the expected value of N?
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Sampling an inhomogeneous Poisson process by time-rescaling, in pictures
Note: this is the analog of inverse-CDF sampling.
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A Goodness of fit test for inhomogeneous Poisson processes
▶ Brown et al. [2002] used the time-rescaling sampling procedure to develop a goodness-of-fit test
for inhomogeneous Poisson processes.

▶ Suppose you observe a set of points {xn}Nn=1 ⊂ [0,T] and you want to test whether they are
well-modeled by an inhomogeneous Poisson process with rate λ(x).

▶ Let ∆n = Λ(xn)−Λ(xn−1) with Λ(x0) = 0. If the model is a good fit, then ∆n
iid∼ Exp(1).

▶ Perform a further transformation zn = 1− e−∆n . Then zn
iid∼ Unif([0,1]).

▶ Now sort the zn’s in increasing order into (z(1), . . . , z(N)), so z(1) is the smallest value.

▶ Intuitively, the points
� n−1/2

N , z(n)
�

should like along a 45◦ line.
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A Goodness of fit test for inhomogeneous Poisson processes II

▶ We can check for significant departures from the 45◦

line using a simple visual test.

▶ The order statistics z(n) are marginally beta distributed,

z(n) ∼ Beta(n,N− n+ 1) (9)

The mean is n
N+1 and its mode is

n−1
N−1 .

▶ Then, use the 2.5% and 97.5% quantiles of the beta
distribution to obtain confidence intervals around the
45◦ line. Figure: Figure 1 from Brown et al. [2002].
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The Poisson Superposition Principle

▶ Property #5: The union (a.k.a. superposition) of independent Poisson processes is also a Poisson
process.

▶ Suppose we have two independent Poisson processes on the same domainX ,

{xn}Nn=1 ∼ PP(λ1(x)) (10)

{x′m}
M
m=1 ∼ PP(λ2(x)) (11)

Then

{xn}Nn=1 ∪ {x
′
m}
M
m=1 ∼ PP(λ1(x) +λ2(x)) (12)

▶ This is the analog of the fact that the sum of independent Poisson random variables is Poisson.
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Poisson thinning

▶ The opposite of Poisson superposition is Poisson thinning.

▶ Suppose we have points {xn}Nn=1 ∼ PP(λ(x)) where λ(x) = λ1(x) +λ2(x).

▶ Sample independent binary variables

zn ∼ Bern

�

λ1(xn)
λ1(xn) +λ2(xn)

�

. (13)

▶ Then {xn : zn = 1} ∼ PP(λ1(x)) and {xn : zn = 0} ∼ PP(λ2(x)).
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Sampling a Poisson process by thinning
Exercise: Use Poisson thinning to sample an inhomogeneous Poisson process with a bounded
intensity, λ(x)≤ λmax.

Question: What Monte Carlo sampling method is this akin to?
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Outline

▶ Defining properties of a Poisson process

▶ Four ways to sample a Poisson process

▶ Beyond Poisson: Hawkes Processes
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What’s not to love about Poisson processes?
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Conditional intensity functions

▶ One way of introducing dependence is via an autoregressive model. Consider a point process on a
time interval [0,T].

▶ Let λ(t | Ht) denote a conditional intensity function whereHt is the history of points before
time t.

▶ Technically,Ht is a filtration in the language of stochastic processes.

▶ Allowing past points to influence the intensity function enables more complex, non-Poisson
models.
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Hawkes processes
▶ Hawkes processes [Hawkes, 1971] are self-exciting point processes.

▶ Their conditional intensity function is modeled as,

λ(t | Ht) = λ0+
∑

tn∈Ht

h(t − tn), (14)

where h : R+ 7→ R+ is a positive impulse response or influence function.

▶ For example, the impulse responses could be modeled as exponential functions,

h(∆t) = w
τ e
−∆tτ = w · Exp(∆t;τ), (15)

where τ ∈ R+ is a time-constant governing the rate of decay and w ∈ R+ is a scaling parameter
such that

∫∞
0 h(∆t)d∆t = w.
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Hawkes processes, in pictures
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Maximum likelihood estimation for Hawkes processes
▶ Suppose we observe a collection of time points {tn}Nn=1 ⊂ [0,T] and want to estimate the
parameters θ = (λ0,w) of a Hawkes process with an exponential impulse response function.
(Consider τ to be fixed.)

▶ The Hawkes process log likelihood is just like that of a Poisson process,

log p({tn}Nn=1 | θ ) = −
∫ T

0

λθ (t | Ht)dt+
N
∑

n=1

logλθ (tn | Ht) (16)
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Maximum likelihood estimation for Hawkes processes
▶ Substituting in the form of the conditional intensity, we can simplify the log likelihood to,

log p({tn}Nn=1 | θ ) = −
∫ T

0

h

λ0+w
∑

tn∈Ht

Exp(t − tn;τ)dt
i

+
N
∑

n=1

log
�

λ0+w
∑

tm∈Htn

Exp(tn − tm;τ)
�

(17)

≈ −θ⊤φ0+
N
∑

n=1

log
�

θ⊤φn

�

(18)

where φ0 = (T ,N)⊤ and φn =
�

1,
∑

tm∈Htn
Exp(tn − tm;τ)

�⊤
.

▶ Questions: What approximation did we make? How would you maximize the log likelihood as a
function of θ ?
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Nonlinear Hawkes processes
Hawkes processes only allow for excitatory impulse responses (w ∈ R+). What if we want to model
self-inhibitory influences as well? A natural generalization of the Hawkes process is,

λ(t | Ht) = f (β0+ β
∑

tn∈Ht

g(t − tn))

where f : R 7→ R+ is a rectifying nonlinear function and β0,β ∈ R can be positive or negative.

These models are a bit more challenging because the Poisson process likelihood requires the
integrated intesity function, which is generally intractable. Instead, we can approximate the integral
with a Riemann sum,

∫

λ(t | Ht)dt ≈
⌊T/∆⌋−1
∑

i=0

λ(i∆ | Hi∆)∆

which essentially treats the intensity as piecewise constant within each interval of length ∆.
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Nonlinear Hawkes processes
In that approximation, the Poisson process likelihood is equivalent, up to a scale factor, to a product of
Poisson likelihoods,

p({tn}Nn=1)≈
⌊T/∆⌋−1
∏

i=0

Po(Ni | λ(i∆ | Hi∆)∆)

=

⌊T/∆⌋−1
∏

i=0

Po

 

Ni | f

 

β0+ β
∑

tn∈Hi∆

g(t − tn)

!

∆

!

where Ni is the number of events in the i-th interval, [iD, (i+ 1)D).

This is a Poisson GLM with weights β = (β0,β)! We can fit it using all the techniques we developed
earlier in the course.
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Marked point processes
▶ Now suppose we observed points from S difference sources.

▶ We can represent the points as a set of tuples, {(tn, sn)}Nn=1 where tn ∈ [0,T] denotes the time
and sn ∈ {1, . . . ,S} denotes the source of the n-th point.

▶ We will model them as a marked point process.

▶ Like before, we have a (conditional) intensity function, but this time is defined over time and
marks,

λ(t, s | Ht) : [0,T]× {1, . . . ,S} 7→ R+ (19)

▶ When s takes on a discrete set of values, we often use the shorthand,

λs(t | Ht)≜ λ(t, s | Ht) (20)

to denote the intensity for the s-th source.
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Multivariate Hawkes processes
▶ A multivariate Hawkes process is a marked point process with mutually excitatory interactions.

▶ It is defined by the conditional intensity functions,

λs(t | Ht) = λs,0+
∑

(tn,sn)∈Ht

hsn,s(t − tn). (21)

where hs,s′(∆t) is a directed impulse response from points on source s to the intensity of s
′.

▶ Again, it is common to model the impulse responses as weighted probability densities; e.g.,

hs,s′(∆t) = ws,s′ · Exp(∆t;τs,s′) (22)

where ws,s′ is the weight.

▶ Like before, the weights can be estimated using maximum likelihood estimation.
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Multivariate Hawkes Processes II

From Linderman and Adams [2014].
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Discovering latent network structure in point process data

▶ We can think of the weights as defining a directed network,

W =





w1,1 . . . w1,S
...

...
wS,1 . . . wS,S



 (23)

where ws,s′ ∈ R+ is the strength of influence that events (points) on source s induce on the
intensity of source s′.

▶ However, we don’t directly observe the network. We only observed it indirectly through the point
process.

▶ Question: when is a multivariate Hawkes process stable, in that the intensity tends to a finite
value in the infinite time limit?
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Multivariate Hawkes processes as Poisson clustering processes
▶ Note that the conditional intensity in eq. (21) is a sum of a background intensity and a bunch of
non-negative impulse responses.

λs(t | Ht) = λ0,s+
∑

(tn,sn)∈Ht

hsn,s(t − tn). (24)

▶ Question: which property of Poisson processes applied to such intensities?
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Multivariate Hawkes processes as Poisson clustering processes
▶ Note that the conditional intensity is a sum of a background intensity and a bunch of
non-negative impulse responses,

λs(t | Ht) = λs,0+
∑

(tn,sn)∈Ht

hsn,s(t − tn). (25)

▶ Question: which property of Poisson processes applied to such intensities?

▶ Using the Poisson superposition principle, we can partition the points Ts = {tn : sn = s} from
source s into clusters attributed to either the background or to one of the impulse responses.

Ts =
N
⋃

n=0

Ts,n (26)

where

Ts,0 ∼ PP(λs,0) [background points] (27)

Ts,n ∼ PP(hsn,s(t − tn)) [points induced by (tn, sn)] (28)
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Multivariate Hawkes processes as Poisson clustering processes
▶ Now the weights have an intuitive interpretation. Plugging in the definition of the impulse
response,

Ts,n ∼ PP
�

wsn,s · Exp(t − tn;τsn,s)
�

. (29)

▶ Question: What is the expected number of points induced by this impulse response, i.e. E[|Ts,n|]?
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Conjugate Bayesian inference for multivariate Hawkes processes
▶ Let’s put a gamma prior on the weights,

ws,s′ ∼ Ga(α,β). (30)

▶ Question: suppose we know the partition of points; i.e. we knew the clusters Ts,n. What is the
conditional distribution,

p
�

ws,s′ | {{Ts,n}Nn=0}
S
s=1

�

=
(31)
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Conjugate Bayesian inference for multivariate Hawkes processes II
▶ We don’t know the partition of spikes in general, but we do know its conditional distribution!

▶ Let zn ∈ {0, . . . ,n− 1} denote the cluster to which the n-th spike is assigned, with zn = 0
denoting the background cluster. With this notation,

Ts,n = {(tn′ , sn′) : sn′ = s∧ zn′ = n}. (32)

▶ Question: what is the conditional distribution of the cluster assignment,

p(zn | {(tn, sn)}Nn=1;θ ) =
(33)

▶ Using these two conditional distributions, we can derive a simple Gibbs sampling algorithm that
alternates between sampling the weights given the clusters and the clusters given the weights.
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Beyond Poisson: Hawkes processes
▶ Hawkes processes are only one way of going beyond Poisson processes.

▶ Whereas Hawkes processes take an autoregressive approach, doubly stochastic point processes
(a.k.a. Cox processes) take a latent variable approach.

▶ In these models, the intensity itself is modeled as a stochastic process,

λ(x)∼ p(λ). (34)

▶ For example, consider the model,

λ(x) = g(f (x)) where f ∼ GP(µ(·), K(·, ·)). (35)

When g is the exponential function, this is called a log Gaussian Cox process. When g is the
sigmoid function, this is called a sigmoidal Gaussian Cox process [Adams et al., 2009].

▶ Aternatively, take λ to be a convolution of a Poisson process with a non-negative kernel; this is
called a Neyman-Scott process [Wang et al., 2022, e.g.].
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Conclusion
▶ Poisson processes are stochastic processes that generate discrete sets of points.

▶ They are defined by an intensity function λ(x), which specifies the expected number of points in
each interval of time or space.

▶ We can build in dependencies by conditioning on past points or introducing latent variables.

▶ Poisson process modeling boils down to inferring the intensity. We can take various parametric
and nonparametric approaches.

▶ The hardness comes about when the integral in the Poisson process likelihood is intractable.

▶ As we will see next time, Poisson processes are also mathematical building blocks for Bayesian
nonparametric models with random measures.
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