
STATS 305B: Practice Final

Write your name here:

Instructions:

• Write on the exam. We will scan it. If you use the extra pages at the back, label clearly.

• You can bring handwritten notes on two sides of an 8.5x11" piece of paper.

• Unless otherwise specified, you can write your answers using the "named distribution PDF short-
hand," e.g. write the pdf of a Gaussian distribution with mean µ and variance σ2 as N (x;µ,σ2).

Some tips:

1. It’s usually a good idea to look through the whole exam before taking it to make sure there aren’t
missing pages; and so that you roughly know what you are up against

2. It’s usually a good idea to skip questions if you are stuck and circle back.

Stanford Honor Code

1. The Honor Code is an undertaking of the students, individually and collectively:

• that they will not give or receive aid in examinations; that they will not give or receive
unpermitted aid in class work, in the preparation of reports, or in any other work that is to
be used by the instructor as the basis of grading;

• that they will do their share and take an active part in seeing to it that others as well as
themselves uphold the spirit and letter of the Honor Code.

2. The faculty on its part manifests its confidence in the honor of its students by refraining from
proctoring examinations and from taking unusual and unreasonable precautions to prevent the
forms of dishonesty mentioned above. The faculty will also avoid, as far as practicable, academic
procedures that create temptations to violate the Honor Code.

3. While the faculty alone has the right and obligation to set academic requirements, the students
and faculty will work together to establish optimal conditions for honorable academic work.
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Problem 1: Mixture Models

Consider a problem of predicting y ∈ R given inputs x ∈ RD. Suppose we believe the targets are a linear
function of the input on some region of input space and a different linear function on another region.
We can encode these beliefs using a latent variable. The resulting model is called a mixture of experts
model.

In this model, an “expert” z ∈ {0, 1} is selected based on the input x , then the target y is generated as a
linear function of x , where the linear parameters depend on which expert was chosen. More formally,
we use the following probabilistic model:

p(zn = 1 | x n;θ ) = σ(c⊤x n)

p(yn | x n, zn;θ ) =

¨

N (yn | w⊤0 x n,σ2
0), if zn = 0

N (yn | w⊤1 x n,σ2
1), if zn = 1

The parameters of this model are θ = {c, w 0, w 1,σ0,σ1}. Suppose we observe data {(x n, yn)}Nn=1. Let
X ∈ RN×D denote the matrix of inputs with rows x⊤n , let y ∈ RN denote the vector of targets, and let
z ∈ {0, 1}N denote the vector of latent variables. In this question, you will derive the EM updates for this
model.

(a) As a warm-up, is the following statement true or false? When applying the EM updates to the
parameters, they may get trapped in a local optima.

(b) Write the joint log-probability log p(y , z | X ;θ ) for this model. Do not replace the sigmoid with its
definition σ(x) = 1

1+exp(−x) or substitute the pdf of the normal distribution.

Hint: Use that:

p(zn | x n;θ ) =
�

σ(c⊤x n)
�zn
�

(1−σ(c⊤x n))
�1−zn

and:

p(yn | x n, zn;θ ) =
�

N (yn | w⊤1 x n,σ2
1)
�zn
�

N (yn | w⊤0 x n,σ2
0)
�1−zn

(c) In the E-step, we compute the posterior over latent variables given the current parameter values.
Give an expression for the posterior probability p(zn = 1 | x n, yn;θ ). Do not replace the sigmoid
with its definition σ(x) = 1

1+exp(−x) or substitute the pdf of the normal distribution.

(d) Let rn = p(zn = 1 | x n, yn;θ old). Recall the objective for the M-step is given by:

argmax
θ

Ep(z|y ,X ;θ old) [log p(y , z | X ;θ )]

Simplify this expectation, substituting rn where appropriate. Do not replace the sigmoid with its
definition σ(x) = 1

1+exp(−x) or substitute the pdf of the normal distribution.

(e) In the M-step, we maximize the expected log-joint with respect to the model parameters. For this
model, it is difficult to jointly maximize with respect to {w 0, w 1} and {σ2

0,σ2
1}. Instead, we will

first maximize with respect to {w 0, w 1} and then update {σ2
0,σ2

1} using the updated {w 0, w 1}.
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Using the objective above, find the M-step update for w 1. Here, you will need to replace N with
the normal pdf.

Hint: You only need to consider the parts of the expected log-joint which contain w 1.

By analogy, write down the M-step update for w 0. You do not need to show your work for this
update.

(f) Find the M-step update for σ2
1. Again, you will need to replace N with the normal pdf.

Hint: Maximize with respect to σ2
1 and not σ1.

By analogy, write down the M-step update for σ2
0. You do not need to show your work for this

update.

(g) [Bonus] Consider the M-step update for c. Rewrite the objective from above, dropping additive
constants which do not depend on c. You should recognize this as (almost) the maximum likelihood
objective for a familiar statistical model. Which model is this, and what makes the M-step objective
for c slightly different? Is there a closed form update for c? If so, write this closed form update. If
not, explain what could be done instead to update c.

Solution:

(a) True.

(b) The joint log-probability is:

log p(t , z | X ;θ ) =
N
∑

n=1

log p(tn, zn | x n;θ )

=
N
∑

n=1

log{σ(c⊤x n)
zn(1−σ(c⊤x n))

1−zn

N (tn|w⊤1 x n,σ2
1)

znN (tn|w⊤0 x n,σ2
0)

1−zn}

=
N
∑

n=1

zn logσ(c⊤x n) + (1− zn) log(1−σ(c⊤x n))+

zn logN (tn|w⊤1 x n,σ2
1) + (1− zn) logN (tn|w⊤0 x n,σ2

0)

(c) Using Bayes Rule, we have:

p(z = 1|x , t;θ ) =
p(t, z = 1|x ;θ )

p(t|x ;θ )

=
p(z = 1|x ;θ )p(t|z = 1, x ;θ )

p(z = 0|x ;θ )p(t|z = 0, x ;θ ) + p(z = 1|x ;θ )p(t|z = 1, x ;θ )

Substituting in the model definition:

p(z = 1|x , t;θ ) =
σ(c⊤x )N (t|w⊤1 x ,σ2

1)

(1−σ(c⊤x ))N (t|w⊤0 x ,σ2
0) +σ(c⊤x )N (t|w⊤1 x ,σ2

1)
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(d) Since Ep(zn|x n,tn;θ old)[zn] = p(zn = 1|x n, tn;θ old) = rn, using linearity of expectation, all we need
to do is substitute zn with rn in the expression from part (a):

N
∑

n=1

rn logσ(c⊤x n) + (1− rn) log(1−σ(c⊤x n))

+ rn logN (tn|w⊤1 x n,σ2
1) + (1− rn) logN (tn|w⊤0 x n,σ2

0)

(e) To find the M-step update, we need to maximize the expected joint log-probability with respect to
σ2

1. First, we notice this is equivalent to maximizing:

N
∑

n=1

rn logN (tn|w⊤1 x n,σ2
1) =

N
∑

n=1

rn

�

−
1
2

log(2π)−
1
2

logσ2
1 −

1

2σ2
1

(tn − w⊤1 x n))

�

We take the derivative of this expression with respect to σ2
1 and set it to zero:

N
∑

n=1

rn

�

−
1

2σ2
1

+
1

2(σ2
1)2
(tn − w⊤1 x n)

2

�

= 0 =⇒
N
∑

n=1

rn

�

1

2σ2
1

�

=
N
∑

n=1

rn

�

1

2(σ2
1)2
(tn − w⊤1 x n)

2

�

=⇒
N
∑

n=1

rn =
N
∑

n=1

rn

�

1

σ2
1

(tn − w⊤1 x n)
2

�

=⇒ σ2
1 =

∑N
n=1 rn(tn − w⊤1 x n)2
∑N

n=1 rn

By analogy, we find that the M-step update for σ2
0 is:

σ2
0 =

∑N
n=1(1− rn)(tn − w⊤0 x n)2
∑N

n=1 1− rn

(f) First, we drop additive constants with respect to w 1 from the objective to find the update is given
by:

w 1← argmax
w1

N
∑

n=1

rn logN (tn | w⊤1 x n,σ2
1)

= argmax
w1

N
∑

n=1

rn

�

−
1

2σ2
1

(tn − w⊤1 x n)
2

�

= argmin
w1

N
∑

n=1

rn(tn − w⊤1 x n)
2

This is a weighted least squares objective. We can rewrite it using matrix-vector notation:

argmin
w1

N
∑

n=1

rn(tn − w⊤1 x n)
2 = argmin

w1

(t − X w 1)
⊤diag(r )(t − X w 1)

= argmin
w1

w⊤1 X⊤diag(r )X w 1 − 2t⊤diag(r )X w 1

4



Here, r =
�

r1 . . . rn
�⊤

. Taking the derivative with respect to w 1 and setting to zero:

2X⊤diag(r )X w 1 − 2X⊤diag(r )t = 0 =⇒ w 1 = (X
⊤diag(r )X)−1X⊤diag(r )t

By analogy, the update for w 0 is:

w 0 = (X
⊤diag(1− r )X)−1X⊤diag(1− r )t

(g) As a function of c, the expected log probability is,

L (c) = Ep(z|y ,X ;θ old

� N
∑

n=1

log p(zn | x n;θ )

�

=
N
∑

n=1

Ep(zn|yn,x n;θ old)

�

zn logσ(c⊤x n) + (1− zn) logσ(c⊤x n)
�

=
N
∑

n=1

ωnc⊤x n − log
�

1+ ec⊤x n
�

.

where we have defined ωn ≜ p(zn = 1 | x n, yn;θ ). We recognize this as the log likelihood for
logistic regression where the targets have been replaced with expected targets, ωn.
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Problem 2: Variational Autoencoders

Consider a VAE with non-negative latent variables,

zn,h ∼ Exp(λ) for h= 1, . . . , H and n= 1, . . . , N

x n ∼N (g(zn;θ ),σ2 I) for n= 1, . . . , N

where x n ∈ RD are the observed data points, zn = (zn,1, . . . , zn,H)⊤ ∈ RH
+ is the latent “encoding” of x n,

and g : RH
+ 7→ R

D is the decoder with parameters θ . Assume a fixed form for the approximate variational
posteriors,

q(zn; x n,φ) =
H
∏

h=1

Ga(zn,h | 2, fh(x n;φ)),

where fh : RD 7→ R+ is an encoder with parameters φ that outputs the rate parameter for the gamma
posterior on the h-th coordinate of the encoding. Note that we are assuming the shape parameter of the
gamma posterior is fixed to 2.

To learn the parameters of the parameters of the encoder (φ) and decoder (θ), we maximize the
ELBO,

L (θ ,φ) =
N
∑

n=1

Eq(zn;x n,φ)
�

log p(x n | zn;θ ,σ2)
�

− DKL (q(zn; x n,φ) ∥ p(zn;λ)) ,

where p(zn;λ) denotes the independent exponential prior from above.

(a) (1.5 pts) Is the following statement true or false? Explain your answer.

∇θL (θ ,φ) =
N
∑

n=1

Eq(zn;x n,φ)
�

∇θ log p(x n | zn;θ ,σ2)
�

.

(b) (1.5 pts) Is the following statement true or false? Explain your answer.

∇φL (θ ,φ) =
N
∑

n=1

Eq(zn;x n,φ)
�

∇φ log p(x n | zn;θ ,σ2)
�

−∇φDKL (q(zn; x n,φ) ∥ p(zn;λ)) .

(c) (5 pts) Derive a reparameterization trick for the gamma posterior. Specifically, write a sample

zn,h ∼ Ga(2, fh(x n;φ)) as a transformation of two uniform random variables, u1, u2
iid∼ Unif([0, 1]).

(d) (5 pts) Compute a closed form expression for the KL divergence in the ELBO.

DKL (q(zn; x n,φ) ∥ p(zn;λ)) = Eq(zn;x n,φ) [log q(zn; x n,φ)− log p(zn;λ)]

(e) (2 pts) In 1-2 sentences, explain how you would use the results from (c) and (d) to obtain an
unbiased estimator of ∇φL (θ ,φ).

Solution:
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(a) TRUE. The second term has no θ dependence, and we can push the ∇θ inside the first expectation
because the measure that we are integrating wrt has no θ dependence.

(b) FALSE. The measure we are integrating wrt has φ dependence, so we have to be more careful
about pushing ∇φ inside the expectation, because are ignoring the effect it has on the measure.

(c)

−
log u1 + log u2

fh(x n;φ)
.

(d)

Eq(zn;x n,φ) [log q(zn; x n,φ)− log p(zn;λ)] =
H
∑

h=1

2 log fh(x n;φ)− log Γ (2) +Ezn,h∼q[log zn,h]

− fh(x n;φ) ·Ezn,h∼q[zn,h]− logλ+λEzn,h∼q[zn,h]

=
H
∑

h=1

2 log fh(x n;φ)− log Γ (2) +ψ(2)− log( fh(x n,θ ))

− fh(x n;φ) ·
2

fh(x n,θ )
− logλ+λ

2
fh(x n,θ )

=
H
∑

h=1

log fh(x n;φ)− logλΓ (2) +ψ(2)− 2+
2λ

fh(x n;φ)
.

(e) In part d, we have just found a closed form for the KL divergence term, so we can just take its
derivative wrt φ using autodiff. As for the expectation term, we can reparameterize the expectation
to be over u1 and u2; pass the gradient wrt φ inside of this expectation; and then simply sample
u1 and u2 to get an unbiased estimator for this derivative.
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Problem 3: Hidden Markov Models

Consider a hidden Markov model (HMM),

z1 ∼ Cat(π0)

zt ∼ Cat(πzt−1
) for t = 2, . . . , T

x t ∼ p(x | θ zt
) for t = 1, . . . , T

where zt ∈ {1, . . . , K} denotes the discrete latent state at time t. The HMM parameters consist of the
initial state probabilities, π0, the transition matrix Π with rows πk ∈ ∆K for k = 1, . . . , K, and the
emission parameters {θ k}Kk=1.

We can represent the latent states in terms of their states at the times of change points, cn ∈ {1, . . . , K},
and the corresponding durations between change points, dn ∈ N+ (these are positive integers). Let c1 = z1
and let d1 denote the number of time steps before the state changes. Then let c2 = z1+d1

and let d2 be
the number of time steps before the state changes again. For example, this state sequence would be
represented as follows,

z1:T = 3,3, 3,3, 3
︸ ︷︷ ︸

c1=3,d1=5

, 1, 1, 1, 1
︸ ︷︷ ︸

c2=1,d2=4

, 2, 2, 2, 2, 2, 2
︸ ︷︷ ︸

c3=2,d3=6

, 1, 1, 1, 1, 1
︸ ︷︷ ︸

c4=1,d4=5

.

(a) (5 pts) Derive the probability mass function p(dn | cn = k).

(b) (5 pts) Derive the probability mass function p(cn+1 | cn = k).

(c) (5 pts) Suppose we want to model a system in which the emissions are conditionally independent
given the latent state, as above, but where durations are uniformly distributed between 1 and 3
time steps. That is, for all k,

p(dn = i | cn = k) =

¨

1
3 if i = 1, 2,3

0 otherwise

How could model such a system using an HMM on an extended state space? Specifically, let
z′t ∈ {1, . . . , K ′} denote the states of your HMM; you may have K ′ > K. What are the transition
and emission probabilities?

(d) ( ) What is the computational complexity of the forward-backward algorithm for this HMM?

Solution:

(a) The duration is following a geometric distribution, so

p(dn|cn = k) = (1−πk,k) ·π
dn−1
k,k .

(b) The idea behind a change point is that cn+1 ̸= cn. So, if cn = k, then cn+1 is a categorical distribution
on all the states except k. We can write this distribution as

P(cn+1 = i) =
πki1(i ̸= k)

1−πk,k
.
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(c) The extended state space now takes the form of the Cartesian product {1, . . . , K}× {1, 2, 3}, where
we refer to the first coordinate as z and the second coordinate as i.

The emission probabilities are entirely governed by z; that is x t ∼ p(x |θ zt
).

The transition probabilities are as follows.

If i = 1, w.p. 2/3 we transition to the state (zt , 2), and w.p. 1/3 we transition to a state (zt+1, 1),
where zt+1 ̸= zt , and the transition probabilities given by P(zt+1 = k) = πk

∑

j ̸=zt
π j

.

If i = 2, then w.p. 1/2 we transition to the state (zt , 3), and w.p. 1/2 we transition to a state (k, 1),
where k ̸= zt . The probabilities of transitioning to these different values of k are governed by
P(zt+1 = k) = πk

∑

j ̸=zt
π j

.

OTOH, if i = 3, then we transition to a state with i = 1, and zt+1 ̸= zt , and with probabilities given
by P(zt+1 = k) = πk

∑

j ̸=zt
π j

.

(d) The complexity of the forward-backward algorithm for a standard HMM is O(T K2). Our embedding
of this hidden semi-Markov model has 3K states, so it’s the same order of magnitude.

More generally, a semi-Markov model with a uniform distribution of durations dn ∼ Unif(1, . . . , R),
would have complexity O(T K2R2).
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Problem 4: Recurrent Neural Networks

Consider a stochastic RNN with linear hidden state dynamics

ht+1 ∼ N(aht , 1),

and initial distribution h0 ∼ N(0,1). This is called a Gaussian linear dynamical system (LDS). It’s also
similar to the noising process we studied in the context of denoising diffusion models.

(a) Derive the conditional distribution, p(hT | h0)?

(b) Suppose we receive one observation, yT ∼ N(hT , 1). Compute the posterior, p(h0 | yT ).

(c) In this case the posterior has a closed form, but suppose we didn’t know that and we tried to solve
for the posterior mode h(MAP)

0 using gradient ascent. Compute the gradient ∇h0
log p(h0, yT ).

(d) For a < 1, how does the gradient scale with T , and why could that be problematic for gradient
based learning?

Solution:

(a) The forward conditionals can be computed recursively. Assume p(ht | h0) = N(λth0,σ2
t ). Then,

p(ht+1 | h0) =

∫

p(ht+1 | ht) p(ht | h0)dhT

=

∫

N(ht+1 | aht , 1)N(ht | λth0,σ2
t )dhT

= N(aλth0, a2σ2
t + 1),

which shows that

λt+1 = aλt ,

σ2
t+1 = a2σ2

t + 1.

With the base case λ1 = a, we can unwind the recursion to obtain,

λt = at

Likewise, with σ2
1 = 1 we find,

σ2
2 = a2 + 1

σ2
3 = a4 + a2 + 1

σ2
4 = a6 + a4 + a2 + 1

σ2
t =

t−1
∑

i=0

a2i =
1− a2t

1− a2
.

Note that for a < 1, the conditional variance converges to a finite value. For a > 1, it diverges.
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(b) First apply the sum rule of probability to obtain the likelihood,

p(yT | h0) =

∫

p(yT , hT | h0)dhT

=

∫

N(yT | hT , 1)N(hT | λT h0,σ2
T )dhT

= N(yT | λT h0,σ2
T + 1),

in the notation of our solution to (a).

Now apply Bayes’ rule,

p(h0 | yT )∝ p(h0)p(yT | h0)

∝ N(h0 | 0, 1)N(yT | λT h0,σ2
T + 1)

∝ exp

�

−
1
2

h2
0 −

1

2(σ2
T + 1)

(yT −λT h0)
2

�

∝ exp

�

−
h2

0

2

�

1+
λ2

T

σ2
T + 1

�

+ h0

�

λT yT

σ2
T + 1

��

Completing the square yields,

p(h0 | yT ) = N(µ̃, σ̃2)

σ̃2 =

�

1+
λ2

T

σ2
T + 1

�−1

µ̃= σ̃2

�

λT yT

σ2
T + 1

�

.

(c) The log joint probability is equal to the log posterior plus a constant with respect to h0,

log p(h0, yT ) = −
1

2σ̃2
(h0 − µ̃)2 + c.

Taking the derivative with respect to h0 yields,

d
dh0

log p(h0, yT ) =
µ̃− h0

σ̃2

(d) The gradient of the log joint is the gradient of the prior plus the gradient of the likelihood. The
gradient of the prior is simply ∇ log p(h0) = −h0. The gradient of the likelihood is,

∇h0
log N(yT | λT h0,σ2

T + 1) =

�

yT −λT h0

σ2
T + 1

�

λT .

Consider the case where a < 1. Then limT→∞λT = limT→∞ aT = 0, whereas limT→∞σ
2
T =

(1− a2)−1 is a positive constant. Thus, the gradient of the likelihood goes to zero.

In this limit, with a < 1, we see that the posterior reduces to the prior, and the information about
yT conveyed by the likelihood gradient vanishes.
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